Solving Linear Systems by Substitution

Common Core Math Standards

The student is expected to:

common coris
 A-REI.C. 6

Solve systems of linear equations exactly... focusing on pairs of linear equations in two variables.

Mathematical Practices

CORE
MP. 6 Precision

Language Objective

Explain to a partner how to solve a system of linear equations by substitution.

ENGAGE

Essential Question: How can you solve a system of linear equations by using substitution?
Solve one equation for one variable and substitute the resulting expression into the other equation. Solve for the value of the other variable in that equation, and then substitute that value into either equation to find the value of the first variable.

PREVIEW: LESSON PERFORMANCE TASK

View the Engage section online. Discuss why a manufacturer might choose to produce either a cheaper version or a more expensive version of a product. Then preview the Lesson Performance Task.
\qquad

11.2 Solving Linear Systems by Substitution

Essential Question: How can you solve a system of linear equations by using substitution?

Explore Exploring the Substitution Method of Solving Linear Systems

Another method to solve a linear system is by using the substitution method.
In the system of linear equations shown, the value of y is given. Use this value of y to find the value of x and the solution of the system.

```
y=2
```

$x+y=6$
(A) Substitute the value of y in the second equation and solve for x.

$$
\begin{aligned}
x+y & =6 \\
x+2 & =6 \\
x & =4
\end{aligned}
$$

(B) The values of x and y are known. What is the solution of the system?

Solution: $\mathbf{4}, \mathbf{2}$
(C) Graph the system of linear equations. How do your solutions compare? The solutions are the same.
(D) Use substitution to find the values of x and y in this system of linear equations. Substitute $4 x$ for y in the second equation and solve for x. Once you find the value for x, substitute it into either original equation to find the value for y.
$\left\{\begin{aligned} y & =4 x \\ 5 x+2 y & =39\end{aligned}\right.$

Solution: $\mathbf{3}, \mathbf{1 2}$

Reflect

1. Discussion For the system in Step D, what equation did you get after substituting $4 x$ for y in $5 x+2 y=39$ and simplifying?
$13 x=39$
2. Discussion How could you check your solution in part D? Graph the system or substitute the values of the variables in both of the original equations.

Solving Consistent, Independent Linear Systems by Substitution

The substitution method is used to solve a system of equations by solving an equation for one variable and substituting the resulting expression into the other equation. The steps for the substitution method are as shown.

1. Solve one of the equations for one of its variables.
2. Substitute the expression from Step 1 into the other equation and solve for the other variable.
3. Substitute the value from Step 2 into either original equation and solve to find the value of the other variable.

Example 1 Solve each system of linear equations by substitution.
(A)
$\left\{\begin{aligned} 3 x+y & =-3 \\ -2 x+y & =7\end{aligned}\right.$
Solve an equation for one variable.

$$
3 x+y=-3
$$

Select one of the equations.
$y=-3 x-3 \quad$ Solve for y. Isolate y on one side.
Substitute the expression for y in the other equation and solve.
$-2 x+(-3 x-3)=7 \quad$ Substitute the expression for y.
$-5 x-3=7 \quad$ Combine like terms.
$-5 x=10 \quad$ Add 3 to both sides.
$x=-2 \quad$ Divide each side by -5.
Substitute the value for x into one of the equations and solve for y.

$$
\begin{aligned}
3(-2)+y & =-3 & & \text { Substitute the value of } x \text { into the first equation. } \\
-6+y & =-3 & & \text { Simplify. } \\
y & =3 & & \text { Add } 6 \text { to both sides. }
\end{aligned}
$$

So, $(-2,3)$ is the solution of the system.
Check the solution by graphing.

$$
\begin{array}{ll}
3 x+y=-3 & -2 x+y=7 \\
x \text {-intercept: }-1 & x \text {-intercept: }-\frac{7}{2} \\
y \text {-intercept: }-3 & y \text {-intercept: } 7 \\
\text { The point of intersection is }(-2,3) .
\end{array}
$$

PROFESSIONAL DEVELOPMENT

Learning Progressions

In this lesson, students continue their work with systems of linear equations. Having learned how to solve a system by graphing, they now learn how to solve a system algebraically by using the substitution method. They learn how to determine whether a system has zero, one, or infinitely many solutions, as well as how to use systems of linear equations to model real-world situations. As they continue, students will learn other algebraic methods for solving systems of linear equations, and will learn how to decide which approach is more efficient for a given system.

EXPLORE

Exploring the Substitution Method of Solving Linear Systems

INTEGRATE TECHNOLOGY

Have students use the graphing tools available in graphing calculators or online to check the solution to a system of linear equations.

INTEGRATE MATHEMATICAL PRACTICES
 Focus on Modeling

MP. 4 Make sure that students understand the connection between a system of linear equations and its graph. The intersection of the two lines shows the solution of the system of equations.

EXPLAIN 1

Solving Consistent, Independent Linear Systems by Substitution

QUESTIONING STRATEGIES

How do you choose which equation you solve first and which variable you solve it for? Explain. Look for an equation that can easily be solved for one variable, such as an equation in which one variable has a coefficient of 1 or -1 . The solution will be the same no matter which equation you solve first, but this will make the process easier.

AVOID COMMON ERRORS

Make sure students understand that after you find the value of one variable, you must also solve for the other variable. Some students may consider their work done when they have evaluated one variable.
(B) $\left\{\begin{array}{l}x-3 y=9 \\ x+4 y=2\end{array}\right.$

Solve an equation for one variable.

$$
\begin{aligned}
& x-3 y=9 \quad \text { Select one of the equations. } \\
& x=3 y+9 \quad \text { Solve for } x \text {. Isolate } x \text { on one side. } \\
& \text { Substitute the expression for } \boldsymbol{X} \text { in the other equation and solve. } \\
& 3 \boldsymbol{y}+\mathbf{9}+4 y=2 \quad \text { Substitute the expression for } \boldsymbol{x} \\
& 7 y+\mathbf{9}=2 \quad \text { Combine like terms. } \\
& 7 y=-7 \quad \text { Subtract }{ }^{9} \text { from both sides. } \\
& y=-\mathbf{1} \quad \text { Divide each side by } 7 .
\end{aligned}
$$

Substitute the value for y into one of the equations and solve for x.

So, $(\mathbf{6},-\mathbf{1})$ is the solution by graphing.
Check the solution by graphing.

$x-3 y=9$
x-intercept:
y-intercept: $-3 \quad y$-intercept: $\frac{\mathbf{1}}{2}$
The point of intersection is $\mathbf{6},-\mathbf{1})$.

Reflect

3. Explain how a system in which one of the equations if of the form $y=c$, where c is a constant is a special case of the substitution method.
There is no need to solve for y in terms of x because the value of y is already known.
4. Is it more efficient to solve $-2 x+y=7$ for x than for y ? Explain.

No, because more steps are needed and $x=\frac{y}{2}-\frac{7}{2}$, which is more difficult to substitute than $y=2 x+7$.

COLLABORATIVE LEARNING

Peer-to-Peer Activity

Group students in pairs, and give each pair a system of linear equations. Have one student solve the first equation for y and the other solve the second equation for y. Then have both students continue to solve independently using substitution. Each should arrive at the same solution. Have partners compare their work and discuss which substitution is more efficient.

Your Turn

5. Solve the system of linear equations by substitution.

$$
\left\{\begin{array}{cll}
3 x+y=14 & y=-3 x+14 & 3(3)+y=14 \\
2 x-6 y=-24 & 2 x-6(-3 x+14)=-24 & y=5 \\
& x=3 & \\
\text { The solution of the system is }(3,5)
\end{array}\right.
$$

Explain 2 Solving Special Linear Systems by Substitution

You can use the substitution method for systems of linear equations that have infinitely many solutions and for systems that have no solutions.

Example 2 Solve each system of linear equations by substitution.
(A)

$$
\begin{aligned}
& \left\{\begin{array}{c}
x+y=4 \\
-x-y=6
\end{array}\right. \\
& \text { Solve } x+y=4 \text { for } x \\
& x=-y+4
\end{aligned}
$$

Substitute the resulting expression into the other equation and solve.

$$
-(-y+4)-y=6 \quad \text { Substitute. }
$$

$$
-4=6 \quad \text { Simplify }
$$

The resulting equation is false, so the system has no solutions
(B)

$$
\begin{aligned}
& \left\{\begin{aligned}
x-3 y & =6 \\
4 x-12 y & =24
\end{aligned}\right. \\
& \text { Solve } x-3 y=6 \text { for } x \\
& x=3 y+6
\end{aligned}
$$

Substitute the resulting expression into the other equation and solve.

$$
\begin{array}{rlr}
4\left(\begin{array}{|c|}
\hline 3 y+6 \\
)
\end{array}-12 y\right. & =24 & \text { Substitute. } \\
24 & =24 & \text { Simplify }
\end{array}
$$

The resulting equation is true , so the
system has infinitely many solutions.

Reflect

6. Provide two possible solutions of the system in Example 2B. How are all the solutions of this system related to one another?
Sample solutions: $(0,-2)$ and $(6,0)$; all the solutions of this system are points on
the line.
[^0]494

The graph shows that the lines are parallel and do not intersect.

The graphs are
the same line
so the system has infinitely many solutions

EXPLAIN 2

Solving Special Linear Systems by Substitution

QUESTIONING STRATEGIES

(2)
When solving a system of linear equations by substitution, how can you tell if the system has no solution or infinitely many solutions? If it has no solutions, the solution process will result in an equation that is false. If it has infinitely many solutions, the solution process will result in an equation that is always true.

How does the graph of a system of linear equations tell you it has no solution or infinitely many solutions? When the equations represent two parallel lines, the lines do not intersect, so there is no solution. When both equations represent the same line, the system has infinitely many solutions.

AVOID COMMON ERRORS

Make sure students understand that when you substitute an expression for a variable, the expression should be placed inside parentheses. Remind students to follow the order of operations and to apply the Distributive Property correctly when dealing with expressions inside parentheses.

INTEGRATE MATHEMATICAL PRACTICES
 Focus on Critical Thinking

MP. 3 You can use algebra tiles to model and solve some systems of linear equations. Solve for one variable using the first equation, then model the second equation.

EXPLAIN 3

Solving Linear System Models by Substitution

AVOID COMMON ERRORS

Some students may struggle with solving by substitution because they automatically start by solving the first equation for y. Encourage them to look at both equations and check whether any of the variables has a coefficient of 1 or -1 . Then have students solve for that variable first.

QUESTIONING STRATEGIES

Is it more accurate to check your solution by graphing or by substituting back into the original equations? Explain. Substituting, because if the solution does not consist of integers, graphing may not give an accurate check.

INTEGRATE MATHEMATICAL PRACTICES

Focus on Technology

MP. 5 Some real-world problems, especially those involving money, may have systems of equations with decimal coefficients. It is far easier to use a graphing calculator to check the solution than it is to draw the graph by hand.

Your Turn

Solve each system of linear equations by substitution.
7. $\left\{\begin{aligned}-2 x+14 y & =-28 \\ x-7 y & =14\end{aligned}\right.$
$x=7 y+14$
$-2(7 y+14)+14 y=-28$
$-28=-28$
infinitely many solutions

> 8. $\left\{\begin{aligned} &-3 x+y=12 \\ & 6 x-2 y=18\end{aligned}\right.$ $\begin{aligned} & \mathbf{y}=\mathbf{3 x}+\mathbf{1 2} \\ & \mathbf{6 x}-\mathbf{2}(3 \boldsymbol{x}+\mathbf{1 2})=\mathbf{1 8} \\ &-\mathbf{2 4}=\mathbf{1 8}\end{aligned}$
no solutions

Explain 3 Solving Linear System Models by Substitution

You can use a system of linear equations to model real-world situations.
Example 3 Solve each real-world situation by using the substitution method.
(A) Fitness center A has a $\$ 60$ enrollment fee and costs $\$ 35$ per month. Fitness center B has no enrollment fee and costs $\$ 45$ per month. Let t represent the total cost in dollars and m represent the number of months. The system of equations $\left\{\begin{array}{l}t=60+35 m \\ t=45 m\end{array}\right.$ can be used to represent this situation. In how many months will both fitness centers cost the same? What will the cost be?

$60+35 m$	$=45 m$		Substitute $60+35 m$ for t in the second equation.
60	$=10 m$		Subtract $35 m$ from each side.
$6=m$		Divide each side by 10.	
$t=45 m$		Use one of the original equations.	
$=45(6)=270$		Substitute 6 for m.	
$(6,270)$		Write the solution as an ordered pair.	
Both fitness centers will cost $\$ 270$ after 6 months.			

Both fitness centers will cost $\$ 270$ after 6 months.
(B) High-speed Internet provider A has a $\$ 100$ setup fee and costs $\$ 65$ per month. High-speed internet provider B has a setup fee of $\$ 30$ and costs $\$ 70$ per month. Let t represent the total amount paid in dollars and m represent the number of months. The system of equations $\left\{\begin{array}{l}t=100+65 m \\ t=30+70 m\end{array}\right.$
can be used to represent this situation. In how many months will both providers cost the same? What will that cost be?

DIFFERENTIATE INSTRUCTION

Graphic Organizer

Have students show the steps for solving a system of equations by substitution.

Solving Systems of Equations by Substitution

Step 1 Solve for one variable in one equation.
Step 2 Substitute the resulting expression into the other equation.
Step 3 Solve that equation to get the value of the other variable.
Step 4 Substitute that value into one of the original equations and solve.
Step 5 Write the values from Steps 3 and 4 in an ordered pair (x, y).
Step 6 Check the solution by substituting into both equations or by graphing.

$t=30+70 m$	Use one of the original equations.
$t=30+70(\boxed{\mathbf{1 4}})$	Substitute $\mathbf{1 4}$ for m.
$t=1010$	
$(\mathbf{1 4}, \mathbf{1 0 1 0}$	Write the sulotion as an ordered pair.

Both Internet providers will cost \$ 1010 after 14 months.

Reflect

9. If the variables in a real-world situation represent the number of months and cost, why must the values of the variables be greater than or equal to zero?
The values of the variables must be greater than or equal to zero because the total cost
and the number of months cannot be negative.

Your Turn

10. A boat travels at a rate of 18 kilometers per hour from its port. A second boat is 34 kilometers behind the first boat when it starts traveling in the same direction at a rate of 22 kilometers per hour to the same port. Let d represent the distance the boats are from the port in kilometers and t represent the amount of time in hours. The system of equations $\left\{\begin{array}{l}d=18 t+34 \\ d=22 t\end{array}\right.$ can be used to represent this situation. How man
hours will it take for the second boat to catch up to the first boat? How far will the boats be from their port? Use the substitution method to solve this real-world application.

$$
\begin{array}{rlrl}
18 t+34 & =22 t & & d=22 t \\
8.5=t & & d=22(8.5)=187
\end{array}
$$

The second boat will catch up in 8.5 hours, and they will be 187 km from their port.

Elaborate

11. When given a system of linear equations, how do you decide which variable to solve for first? Use a variable that has a coefficient of 1 or $\mathbf{- 1}$. If no variables have a coefficient of 1 or $\mathbf{- 1}$, look for a variable that will result in the simplest expression.
12. How can you check a solution for a system of equations without graphing? Substitute the solution into each equation and determine whether all of the equations in the system are true.
13. Essential Question-Check-In Explain how you can solve a system of linear equations by substitution. Solve one equation for one variable and use the result to substitute into the other equation. Solve for the value of the other variable. Then substitute that value into either equation to find the value of the first variable.

LANGUAGE SUPPORT EL

Connect Vocabulary

Remind students that the substitution method involves substituting an expression from one equation into the other equation. Explain that to substitute means to replace. Note that the word substitute can be used as a noun or an adjective: a substitute (noun) in sports replaces the original player, and a substitute (adjective) teacher replaces the regular teacher. Emphasize that expressions used for substitution in math must always be equal in value to the expression they are replacing.

ELABORATE

QUESTIONING STRATEGIES

Why can you substitute the value of one variable into either of the original equations to find the value of the other variable? If there is a solution to the system of equations, the values of the variables will satisfy both equations.

SUMMARIZE THE LESSON

How do you know if your solution to a system of linear equations is correct? You can verify your solution by graphing the equations. This allows you to verify that the number of solutions is correct by seeing whether the lines appear to be the same line, two parallel lines, or two lines that intersect at one point. If the lines intersect at one point, you can also substitute the solution back into the original equations to verify your solution.

EVALUATE

INTEGRATE MATHEMATICAL PRACTICES

Focus on Reasoning

MP. 2 Students can check their solutions for correctness by substituting the values into the original equations and verifying that both solutions make both equations true.

Evaluate: Homework and Practice

1. In the system of linear equations shown, the value of y is given. Use this value of y to find the value of x and the solution of the system.

- Online Homework - Online Homewo - Extra Practice

$$
\left\{\begin{aligned}
y & =12 \\
2 x-y & =4
\end{aligned}\right.
$$

a. What is the solution of the system?

The solution is $(8,12)$.

Solve each system of linear equations by substitution.
2. $\left\{\begin{array}{l}5 x+y=8 \\ 2 x+y=5\end{array}\right.$

$$
\begin{aligned}
& y=-5 x+8 \\
& 2 x+(-5 x+8)=5 \\
&-3 x+8=5 \\
&-3 x=-3 \\
& x=1
\end{aligned}
$$

$$
\begin{aligned}
5(1)+y & =8 \\
5+y & =8 \\
v & =3
\end{aligned}
$$

$$
y=3
$$

The solution is $(1,3)$.

$$
\text { 5. }\left\{\begin{aligned}
& x+7 y=-11 \\
&-2 x-5 y=4 \\
& x=-7 y-11 \\
&-2(-7 y-11)-5 y=4 \\
& 9 y+22=4 \\
& 9 y=-18 \\
& y=-2
\end{aligned}\right\} \begin{aligned}
x+7(-2) & =-11 \\
x-14 & =-11 \\
x & =3
\end{aligned}
$$

The solution is $(3,-2)$.
3. $\left\{\begin{array}{l}x-3 y=10 \\ x+5 y=-22\end{array}\right.$

$$
x=3 y+10
$$

$(3 y+10)+5 y=-22$ $8 y+10=-22$
$8 y=-32$
$y=-4$
$x-3(-4)=10$
$x+12=10$
$x=-2$
The solution is $(-2,-4)$.
6. $\left\{\begin{array}{l}2 x+6 y=16 \\ 3 x-5 y=-18\end{array}\right.$

$$
\left.\begin{array}{c}
2 x=-6 y+16 \\
x=-3 y+8 \\
3(-3 y+8)-5 y=-18 \\
-14 y+24=-18 \\
-14 y=-42 \\
y=3 \\
2 x+6(3)=16 \\
2 x+18=16 \\
2 x=-2 \\
x=-1
\end{array}\right\}
$$

4. $\left\{\begin{array}{l}5 x-3 y=22 \\ -4 x+y=-19\end{array}\right.$

$$
y=4 x-19
$$

$$
5 x-3(4 x-19)=22
$$

$$
-7 x+57=22
$$

$$
-7 x=-35
$$

$$
-4(5)+y=-19
$$

$$
x=5
$$

$$
-20+y=-19
$$

$$
y=1
$$

The solution is $(5,1)$.
7. $\left\{\begin{aligned} 7 x+2 y & =24 \\ -6 x+3 y & =3\end{aligned}\right.$

$$
3 y=6 x+3
$$

$$
y=2 x+1
$$

$$
7 x+2(2 x+1)=24
$$

$$
11 x+2=24
$$

$$
11 x=22
$$

$$
x=\mathbf{2}
$$

$$
-6(2)+3 y=3
$$

$$
-12+3 y=3
$$

$3 y=15$

$$
y=5
$$

The solution is $(2,5)$.

Exercise	Depth of Knowledge (D.0.K.)	common Cois
Mathematical Practices		
1	$\mathbf{2}$ Skills/Concepts	$\mathbf{M P . 4}$ Modeling
$2-13$	$\mathbf{1}$ Recall of Information	$\mathbf{M P . 2}$ Reasoning
$14-18$	$\mathbf{2}$ Skills/Concepts	$\mathbf{M P . 4}$ Modeling
19	$\mathbf{3}$ Strategic Thinking	$\mathbf{M P . 4}$ Modeling
20	$\mathbf{2}$ Skills/Concepts	$\mathbf{M P . 2}$ Reasoning
21	$\mathbf{2}$ Skills/Concepts	$\mathbf{M P . 4}$ Modeling

Solve each system of linear equations by substitution.
8. $\left\{\begin{aligned} x+y & =3 \\ -4 x-4 y & =12\end{aligned}\right.$
$x=-y+3$
$-4(-y+3)-4 y=12$
$-12=12$

There is no solution.
11. $\{$

$$
\begin{gathered}
\left\{\begin{array}{c}
5 x-y=18 \\
10 x-2 y=32
\end{array}\right. \\
-y=-5 x+18 \\
y=5 x-18 \\
10 x-2(5 x-18)=32 \\
36-37
\end{gathered}
$$

There is no solution.
9. $\left\{\begin{array}{l}3 x-3 y=-15 \\ -x+y=5\end{array}\right.$

$$
y=x+5
$$

$$
3 x-3(x+5)=-15
$$

$-15=-15$
There are infinitely many solutions.
12. $\left\{\begin{array}{l}-2 x-3 y=12 \\ -4 x-6 y=24\end{array}\right.$
$x=-\frac{3}{2} y-6$
$\begin{aligned}-4\left(-\frac{3}{2} y-6\right)-6 y & =24 \\ 24 & =24\end{aligned}$
There are infinitely many solutions.
10. $\left\{\begin{aligned} x-8 y & =17 \\ -3 x+24 y & =-51\end{aligned}\right.$

$$
\begin{aligned}
& x=8 y+17 \\
&-3(8 y+17)+24 y=-51 \\
&-51=-51
\end{aligned}
$$

There are infinitely many solutions.
13. $\left\{\begin{array}{l}3 x+4 y=36 \\ 6 x+8 y=48\end{array}\right.$

$$
3 x=-4 y+36
$$

$$
x=-\frac{4}{3} y+12
$$

$$
6\left(-\frac{4}{3} y+12\right)+8 y=48
$$

$$
72=48
$$

There is no solution.

Solve each real-world situation by using the substitution method.
14. The number of DVDs sold at a store in a month was 920 and the number of DVDs sold decreased by 12 per month. The number of Blu-ray discs sold in the same store in the same month was 502 and the number of Blu-ray discs sold increased by 26 per month. Let d represent the number of discs sold and t represent the time in months.
The system of equations $\left\{\begin{array}{l}d=920-12 t \\ d=502+26 t\end{array}\right.$ can be

used to represent this situation. If this trend continues, in how many months will the number of DVDs sold equal the number of Blu-ray discs sold? How many of each is sold in that month?

$$
\begin{aligned}
920-12 t & =502+26 t & & d \\
418 & =38 t & & d \\
11 & =t & & d
\end{aligned}=782+26 t+26(11)
$$

There will be 788 DVDs and 788 Blu-Ray discs sold per month in 11 months.
15. One smartphone plan costs $\$ 30$ per month for talk and messaging and $\$ 8$ per gigabyte of data used each month. A second smartphone plan costs $\$ 60$ per month for talk and messaging and $\$ 3$ per gigabyte of data used each month. Let c represent the total cost in dollars and d represent the amount of data used in gigabytes. The system of equations $\left\{\begin{array}{l}c=30+8 d \\ c=60+3 d\end{array}\right.$ can be used to represent this situation. How many gigabytes would have to be used for the plans to cost the same? What would that cost be?
$30+8 d=60+3 d$

$$
c=30+8(6)
$$

$5 d=30$
$c=78$
$d=6$

Both plans would cost $\$ 78$ if 6 gigabytes of data are used.

Exercise	Depth of Knowledge (D.O.K.)	\%own Mathematical Practices
22	3 stategic Thinking M...i.	MP. 4 Modeding
23	3 Strategic Thinking M.C.i.i	M.6. Precision
24	3 Straegic Thinking M.O.i.	MP. 3 Log

AVOID COMMON ERRORS

Students often think they have solved a system of equations after finding the value of only one variable. Remind them that the solution is an ordered pair.
16. A movie theater sells popcorn and fountain drinks. Brett buys 1 popcorn bucket and 3 fountain drinks for his family, and pays a total of $\$ 9.50$. Sarah buys 3 popcorn buckets and 4 fountain drinks for her family, and pays a total of $\$ 19.75$. If p represents the number of popcorn buckets and d represents the number of drinks, then the system of equations $\left\{\begin{array}{c}9.50=p+3 d \\ 19.75=3 p+4 d\end{array}\right.$ can be used to represent this situation. Find the cost of a popcorn bucket and the cost of a fountain drink.
$9.50-3 d=p$
$9.50=p+3(1.75)$
$19.75=3(9.50-3 d)+4 d$ $9.50=p+5.25$
$1.75=d$
$4.25=p$

The cost of a bucket of popcorn is $\mathbf{\$ 4 . 2 5}$ and the cost of a fountain soda is $\mathbf{\$ 1 . 7 5}$.
17. Jen is riding her bicycle on a trail at the rate of 0.3 kilometer per minute. Michelle is 11.2 kilometers behind Jen when she starts traveling on the same trail at a rate of 0.44 kilometer per minute. Let d represent the distance in kilometers the bicyclists are from the start of the trail and t represent the time in minutes.
The system of equations $\left\{\begin{array}{l}d=0.3 t+11.2 \\ d=0.44 t\end{array}\right.$ can be used to represent this situation. How many minutes
will it take Michelle to catch up to Jen? How far will they be from the start of the trail? Use the substitution method to solve this real-world application.

$$
\begin{array}{rlrl}
0.3 t+11.2 & =0.44 t & d & =0.44 t \\
80 & =t & & =0.44(80)=35.2
\end{array}
$$

Michelle will catch up in 80 minutes, and they will be 35.2 km from the start.
18. Geometry The length of a rectangular room is 5 feet more than its width. The perimeter of the room is 66 feet. Let L represent the length of the room and W represent the width in feet. The system of equations
$\{L=W+5$
$\left\{\begin{array}{cl}L & =W+5 \\ 66 & =2 L+2 W\end{array}\right.$ can be used to represent this situation. What are the room's dimensions?
$66=2(W+5)+2 W \quad L=W+5$
$56=4 W \quad L=14+5$
$14=W \quad L=19$
The room has a width of 14 feet and a length of 19 feet.
19. A cable television provider has a $\$ 55$ setup fee and charges $\$ 82$ per month, while a satellite television provider has a $\$ 160$ setup fee and charges $\$ 67$ per month. Let c represent the total cost in dollars and t represent the amount of time in months. The system of equations $\left\{\begin{array}{l}c=55+82 t \\ c=160+67 t\end{array}\right.$ can be used to represent this situation.
a. In how many months will both providers cost the same? What will that cost be?

$$
\begin{aligned}
55+82 t & =160+67 t & & c=55+82 t \\
15 t & =105 & & c=55+82(7) \\
t & =7 & & =629
\end{aligned}
$$

Both providers will cost $\$ 629$ in 7 months.

b. If you plan to move in 12 months, which provider would be less expensive? Explain.

Satellite would be less expensive because it costs less per month than cable and 12 months is after $\mathbf{7}$ months.
20. Determine whether each of the following systems of equations have one solution, infinitely many solutions, or no solution. Select the correct answer for each lettered part.
a. $\left\{\begin{aligned} x+y & =5 \\ -6 y-6 y & =30\end{aligned}\right.$
b. $\{x+y=7$
one
c. $\left\{\begin{array}{c}3 x+y=5 \\ 6 x+2 y=12\end{array}\right.$
none
d. $\left\{\begin{aligned} 2 x+5 y & =-12 \\ x+7 y & =-15\end{aligned}\right.$ one
e. $\{$ $\begin{aligned} 3 x+5 y & =17 \quad \text { infinitely many } \\ -6 x-10 y & =-34 \quad\end{aligned}$
21. Finance Adrienne invested a total of $\$ 1900$ in two simple-interest money market accounts. Account A paid 3% annual interest and account B paid 5% annual interest. The total amount of interest she earned after one year was $\$ 83$. If a represents the amount invested in dollars in account A and b represents the
amount invested in dollars in account B, the system of equations

$$
a+b=1900
$$

$0.03 a+0.05 b=83$
this situation. How much did Adrienne invest in each account?

$$
\begin{array}{rlrl}
a=-b+1900 & a+b & =1900 \\
0.03(-b+1900)+0.05 b & =83 & a+(1300) & =1900 \\
0.02 b & =26 & a & =600 \\
b & =1300 &
\end{array}
$$

Adrienne invested $\$ 600$ in account A and $\$ 1300$ in account B.

H.O.T. Focus on Higher Order Thinking

22. Real-World Application The Sullivans are deciding between two landscaping companies. Evergreen charges a $\$ 79$ startup fee and $\$ 39$ per month. Eco Solutions charges a $\$ 25$ startup fee and $\$ 45$ per month. Let c represent the total cost in dollars and t represent the time in months. The system of equations $\{c=39 t+79$ ${ }_{5}$ can be used to represent this situation.
a. In how many months will both landscaping services cost the same? What will that cost be?

$$
\left.\begin{array}{rlrl}
39 t+79 & =45 t+25 & & c
\end{array}\right)=45 t+79 \quad 1 \quad \text { Both will cost } \$ 430 \text { in } 9 \text { months. }
$$

b. Which landscaping service will be less expensive in the long term? Explain.

Evergreen will be less expensive than Eco Solutions in the long term. They will cost the same after 9 months but the rate of change for Evergreen is less than the rate of change for Eco Solutions.

VISUAL CUES

After isolating one variable in one equation, some students may find it helpful to highlight the variable with a colored pencil, and then highlight the same variable in the other equation. This will help them remember where in the other equation to substitute the expression for that variable.

JOURNAL

Have students write a journal entry that summarizes how to solve a system of equations by substitution. Students should mention how to decide which equation to use for the substitution.
23. Multiple Representations For the first equation in the system of linear equations below, write an equivalent equation without denominators. Then solve the system.
$\left\{\begin{array}{l}\frac{x}{5}+\frac{y}{3}=6 \\ x-2 y=8\end{array}\right.$
$15\left(\frac{x}{5}+\frac{y}{3}\right)=6$
$3 x+5 y=90$
$x-2 y=8$
$x=2 y+8$
$3(2 y+8)+5 y=90$
$6 y+24+5 y=90$
$11 y+24=90$
$11 y=66$
$y=6$

$$
\begin{aligned}
x-2(6) & =8 \\
x-12 & =8 \\
x & =20
\end{aligned}
$$

The solution is $(\mathbf{2 0}, \mathbf{6})$.
24. Conjecture Is it possible for a system of three linear equations to have one solution? If so, give an example.
Yes; the solution is an ordered pair that is a solution of each of the equations. For example, the solution of the system containing the equations $3 x-y=5, x+y=3$, and $x=2 y$ is $(2,1)$.
25. Conjecture Is it possible to use substitution to solve a system of linear equations if one equation represents a horizontal line and the other equation represents a vertical line? Explain.
No, the equation of a horizontal line is in the form $y=a$ and the equation of a vertical line is in the form $x=b$. The horizontal line equation has no x-term and the vertical line equation has no y-term.

Lesson Performance Task

A company breaks even from the production and sale of a product if the total revenue equals the total cost. Suppose an electronics company is considering producing two types of smartphones. To produce smartphone A, the initial cost is $\$ 20,000$ and each phone costs $\$ 150$ to produce. The company will sell smartphone A at $\$ 200$. Let $C(a)$ represent the total cost in dollars of producing a units of smartphone A. Let $R(a)$ represent the total revenue, or money the company takes in due to selling a units of smartphone A. The system of
equations $\left\{\begin{array}{l}C(a)=20,000+150 a \\ R(a)=200 a\end{array}\right.$ can be used to represent the situation for phone A.

To produce smartphone B, the initial cost is $\$ 44,000$ and each phone costs $\$ 200$ to produce. The company will sell smartphone B at $\$ 280$. Let $C(b)$ represent the total cost in dollars of producing b units of smartphone B and $R(b)$ represent the total revenue from
selling b units of smartphone B. The system of equations $\left\{\begin{array}{l}C(b)=44,000+200 b \\ R(b)=280 b\end{array}\right.$ can be
used to represent the situation for phone B.
Solve each system of equations and interpret the solutions. Then determine whether the company should invest in producing smartphone A or smartphone B. Justify your answer.

Smartphone A:	Smartphone B:
$200 a=20,000+150 a$	$280 b=44,000+200 b$
$50 a=20,000$	$806=44,000$
$a=400$	$b=550$
$R(a)=200 a$	$R(b)=2806$
$=200$ (400)	$=\mathbf{2 8 0}(550)$
$=80,000$	$=154,000$
The company will break even selling 400 units of smartphone A for a total \$80,000.	The company will break even selling 550 units of smartphone B for a total of $\$ 154,000$.
Some students may say that the co smartphone A because the initial that of producing smartphone Ba to be sold for the company to brea company should consider other fa smartphone B or looking for ways Module 11	ould invest in producing ducing smartphone A is less than units of smartphone A would need ther students may argue that the h as increasing the sale price of initial cost of production. 502

EXTENSION ACTIVITY

Many companies sell accessories for smartphones. Have students research the different types of accessories sold and make conjectures about how a company might use a system of equations to find the break-even cost in selling these accessories.

QUESTIONING STRATEGIES

How is profit determined? Profit = total revenue - total cost $=\boldsymbol{R}-\mathbf{C}$

When total revenue equals total cost, what is the profit? What is this situation called? The profit is $\$ 0$; this is called the break-even point. The break-even points in the Lesson Performance Task are when $\mathbf{C}(\mathrm{a})=\boldsymbol{R}(\mathrm{a})$ for smartphone A and $C(b)=\boldsymbol{R}(b)$ for smartphone B.

INTEGRATE MATHEMATICAL PRACTICES
 Focus on Technology

MP. 8 To check their solutions for smartphone A , have students use graphing calculators to graph $y=20,000+150 x$ and $y=200 x$ on the same coordinate plane. Then they can go to the CALC menu and select the intersect feature to find the coordinates of the point of intersection. Students can use the same procedure with the equations $y=44,000+200 x$ and $y=280 x$ to check their answers for smartphone B.

Scoring Rubric

2 points: Student correctly solves the problem and explains his/her reasoning. 1 point: Student shows good understanding of the problem but does not fully solve or explain his/her reasoning.
0 points: Student does not demonstrate understanding of the problem.

[^0]: Module 11

