Solving Linear Systems by Adding or Subtracting

Common Core Math Standards

The student is expected to:

Solve systems of linear equations exactly... focusing on pairs of linear equations in two variables.

Mathematical Practices

CORE
MP. 2 Reasoning

Language Objective

Explain to a partner what eliminating a variable in a system of linear equations means.

ENGAGE

Essential Question: How can you solve a system of linear equations by adding and subtracting?

If the coefficients of the x-terms or y-terms are the same or are opposites, you can add or subtract the equations to eliminate a variable. Then you can solve for the remaining variable and substitute that value into either of the original equations to solve for the other variable.

PREVIEW: LESSON PERFORMANCE TASK

View the Engage section online. Discuss how much two runners from the same family save by registering as a family instead of as individuals. Then preview the Lesson Performance Task.

11.3 Solving Linear Systems by Adding or Subtracting

Essential Question: How can you solve a system of linear equations by adding and subtracting?

Explore Exploring the Effects of Adding Equations

Systems of equations can be solved by graphing, substitution, or by a third method, called elimination
(A) Look at the system of linear equations
$\left\{\begin{array}{c}2 x-4 y=-10 \\ 3 x+4 y=5\end{array}\right.$
What do you notice about the coefficients of the y-terms?
They are opposites or additive inverses.
(B) What is the sum of $-4 y$ and $4 y$? How do you know?

0 ; the sum of opposites is 0 .
(C) Find the sum of the two equations by combining like terms.
$2 x \quad-4 y=-10$
$\begin{array}{r}+3 x+4 y=+5 \\ \hline \mathbf{5 x}+0=-5\end{array}$
(E) Use the value of x to find the value of y. What is the solution of the system?
$y=2$
Solution: (-1, 2)

Reflect

1. Discussion How do you know that when both sides of the two equations were added, the resulting sums were equal?
$2 x-4 y=-10$ and $3 x+4 y=5$, so $(2 x-4 y)+(3 x+4 y)=(-10)+5$ by the
Addition Property of Equality.
2. Discussion How could you check your solution?

Solve the system by graphing or substitute the values of the variables into the original
equations.

Explain 1 Solving Linear Systems by Adding or Subtracting

The elimination method is a method used to solve systems of equations in which one variable is eliminated by adding or subtracting two equations in the system.

Steps in the Elimination Method

1. Add or subtract the equations to eliminate one variable, and then solve for the other variable.
2. Substitute the value into either original equation to find the value of the eliminated variable
3. Write the solution as an ordered pair.

Example 1

Solve each system of linear equations using the indicated method. Check your answer by graphing.
(A)

> Solve the system of linear equations by adding.

$$
\begin{aligned}
& \left\{\begin{aligned}
4 x-2 y & =12 \\
x+2 y & =8
\end{aligned}\right. \\
& \text { Substitute the value of } x \text { into one of the } \\
& \text { equations and solve for } y \text {. } \\
& x+2 y=8 \\
& 4 x-2 y=12 \\
& 4+2 y=8 \\
& x+2 y=8 \\
& 2 y=4 \\
& y=2 \\
& 5 x=20 \\
& \text { Write the solution as an ordered pair. } \\
& (4,2) \\
& \text { Check the solution by graphing }
\end{aligned}
$$

(B) Solve the system of linear equations by subtracting.

$$
\left.\left.\begin{array}{l}
\left\{\begin{array}{rl}
2 x+6 y=6 & \text { Substitute the value of } y \text { into one of the equations and solve for } x . \\
2 x-y=-8 & 2 x-y=-8
\end{array}\right. \\
\text { Subtract the equations. } \\
2 x+6 y=6 \\
-(2 x-y=-8) \\
2 x-2=-8
\end{array}\right\} \begin{array}{rl}
2 x & =-6
\end{array}\right\}
$$

PROFESSIONAL DEVELOPMENT

Integrate Mathematical Practices

This lesson provides an opportunity to address Mathematical Practice MP.2, which calls for students to "reason abstractly and quantitatively." Students learn to solve systems of two equations by using elimination. When using this method, students must consider the relationship between the coefficients of the variables to determine whether the equations should be added or subtracted. They connect the results of the algebraic solution method to the graph of the system of equations as they learn to recognize and describe systems that have no solutions or infinitely many solutions.

EXPLORE

Exploring the Effects of Adding Equations

INTEGRATE MATHEMATICAL PRACTICES
 Focus on Modeling

MP. 4 Have students model the linear equations with algebra tiles. They should see that if they add the equations, one of the variables will drop out and they will be able to solve the resulting equation.

QUESTIONING STRATEGIES

?
How do you know that the result of adding two equations is a true equation? The left and right sides of an equation are equal to each other. By the Addition Property of Equality, adding one of these equal expressions to each side of a true equation results in a true equation.

EXPLAIN 1

Solving Linear Systems by Adding or Subtracting

QUESTIONING STRATEGIES

How can you tell if a linear system has a variable that can be eliminated by adding? The equations will have two like terms that are opposites.

How can you decide whether to add or subtract to eliminate a variable in a linear system? If two of the variable terms are opposites, add to eliminate a variable. If two of the variable terms are the same, subtract to eliminate a variable.

LANGUAGE SUPPORT EE

Connect Vocabulary

Tell students that in the elimination method, one variable is eliminated by adding or subtracting. Relate the term elimination to what happens in many competitions: teams are eliminated by their opponents. Similarly, a variable is eliminated by its opposite.

Write the solution as an ordered pair.

$(-3,2)$

Check the solution by graphing

Reflect

3. Can the system in part A be solved by subtracting one of the original equations from the other? Why or why not?
No; if either of the original equations in the system is subtracted from the other, neither variable will be eliminated.
4. In part B, what would happen if you added the original equations instead of subtracting? You would get $4 x+5 y=-2$, which would not help to solve the system because neither
variable would be eliminated

Your Turn

Solve each system of linear equations by adding or subtracting.
5. $\left\{\begin{array}{l}2 x+5 y=-24 \\ 3 x-5 y=14\end{array}\right.$
$2 x+5 y=-24$

$3 x-5 y$	$=14$
$5 x+0$	$=-10$

$5 x=-10$
$x=-2$
$2(-2)+5 y=-24$
$-4+5 y=-24$
$5 y=-20$
$y=-4$
Solution: $(-2,-4)$
6. $\left\{\begin{aligned} 3 x+2 y & =5 \\ x+2 y & =-1\end{aligned}\right.$
$3 x+2 y=5$

$-(x+2 y=-1)$
$2 x+0=6$

$2 x=6$
$x=3$
$x+2 y=-1$
$3+2 y=-1$
$2 y=-4$
$y=-2$
Solution: (3,-2)

COLLABORATIVE LEARNING

Peer-to-Peer Activity

Have students work in pairs. Give each pair a system of linear equations to solve. Instruct one student to solve the system of linear equations by elimination.
Instruct the other to solve the system by graphing. Have students check that they both got the same solution. Then have students switch roles and repeat the exercise using a different system of linear equations.

Solving Special Linear Systems by Adding or Subtracting

Example 2
Solve each system of linear equations by adding or subtracting.
(A)

$$
\begin{aligned}
& \left\{\begin{array}{l}
-4 x-2 y=4 \\
4 x+2 y=
\end{array}\right. \\
& \text { Add the equations. } \\
& -4 x-2 y= \\
& \begin{aligned}
+4 x+2 y & =
\end{aligned} \\
& \begin{aligned}
+4 x+0 & =
\end{aligned} \\
& \hline 0+0
\end{aligned}
$$

The resulting equation is true, so the system has infinitely many solutions.
Graph the equations to provide more information.

The graphs are the same line, so the system has infinitely many solutions.
(B)
$\left\{\begin{array}{l}x+y=-2 \\ x+y=4\end{array}\right.$

Subtract the equations.

$$
\begin{aligned}
x+y & =-2 \\
-(x+y & =4) \\
\hline \mathbf{0}+\mathbf{0} & =-\mathbf{6} \\
\mathbf{0} & =-\mathbf{6}
\end{aligned}
$$

The resulting equation is
false
so the system has no solutions.

Graph the equations to provide more information.

The graph shows that the lines are parallel and do not intersect

DIFFERENTIATE INSTRUCTION

Graphic Organizers

Have students complete the table to summarize which variable can be eliminated and whether addition or subtraction should be used when solving a system of equations by elimination.

System of Linear Equations Has	Eliminate	By (operation)
x-terms that are opposites	\boldsymbol{x}	adding
y-terms that are opposites	\boldsymbol{y}	adding
x-terms that are the same	\boldsymbol{x}	subtracting
y-terms that are the same	y	subtracting

EXPLAIN 3

Solving Linear System Models by Adding or Subtracting

QUESTIONING STRATEGIES

?
After you have found the value of one of the variables, does it matter which equation you substitute the value of that variable into to solve for the other variable? Explain. No; both variables appear in both equations, and since the solution to the system is the ordered pair that satisfies both equations, the result should be the same no matter which equation you choose.

INTEGRATE MATHEMATICAL PRACTICES
 Focus on Reasoning

MP. 2 Remind students to check that the solution makes sense in the context of the problem.

AVOID COMMON ERRORS

Some students may forget to answer the question in a real-world problem after solving the system of equations. Tell students that the solution to the system may not be the final answer, and remind them to make sure they answer the question in the problem.

Your Turn

Solve each system of linear equations by adding or subtracting.
7. $\left\{\begin{array}{l}4 x-y=3 \\ 4 x-y=-2\end{array}\right.$

$$
4 x-y=3
$$

$$
\frac{-(4 x-y=-2)}{0+0=5}
$$

$$
0=5
$$

The resulting equation is false, so the system has no solutions.
8. $\left\{\begin{aligned} x-6 y & =7 \\ -x+6 y & =-7\end{aligned}\right.$

$$
x-6 y=7
$$

$$
\begin{gathered}
-x+6 y=-7 \\
\hline 0+0=0 \\
0=0
\end{gathered}
$$

The resulting equation is true, so the system has infinitely many solutions.

Explain 3 Solving Linear System Models by Adding or Subtracting

Example 3 Solve by adding or subtracting.
(A) Perfect Patios is building a rectangular deck for a customer According to the customer's specifications, the perimeter should be 40 meters and the difference between twice the length and twice the width should be 4 meters.
The system of equations $\left\{\begin{array}{c}2 \ell+2 w=40 \\ 2 \ell-2 w=4\end{array}\right.$ can be used to
represent this situation, where ℓ is the length and w is the width. What will be the length and width of the deck?

Add the equations.
Substitute the value of ℓ into one of the equations and solve for w.
$2 \ell+2 w=40$

$$
2 \ell-2 w=4
$$

$$
\begin{aligned}
2 \ell+2 w & =40 \\
2(11)+2 w & =40 \\
22+2 w & =40 \\
2 w & =18 \\
w & =9
\end{aligned}
$$

$4 \ell=44$
$\ell=11$

Write the solution as an ordered pair.
$(\ell, w)=(11,9)$
The length of the deck will be 11 meters and the width will be 9 meters.

LANGUAGE SUPPORT EL

Connect Context

Help students eliminate confusion by reminding them of the resources they can use when they are unsure of the meaning of a word. They can consider the context of a problem, use the glossary or a dictionary, think of possible cognates, or ask a friend. Remind them of these synonyms for words in the lesson:
eliminate $=$ remove; opposite $=$ additive inverse; substitute $=$ replace; and false $=$ untrue.
(B) A video game and movie rental kiosk charges $\$ 2$ for each video game rented, and $\$ 1$ for each movie rented. One day last week, a total of 114 video games and movies were rented for a total of $\$ 177$. The system of equations $\left\{\begin{array}{c}x+y=114 \\ 2 x+y=177\end{array}\right.$ represents this situation, where x represents the number of video games rented and y represents the number of movies rented. Find the numbers of video games and movies that were rented.

Subtract the equations. $x+y=114$	Substitute the value of x into one of the equations and solve for y. $x+y=114$
-(2x+y=177)	$63+y=114$
$\begin{aligned} -x+0 & =-63 \\ -x & =-63 \end{aligned}$	$y=51$
$x=63$	Write the solution as an ordered pair. $(63,51)$
	63 video games and 51 movies were rented.

Your Turn

9. The perimeter of a rectangular picture frame is 62 inches. The difference of the length of the frame and twice its width is 1 . The system of equations $\left\{\begin{array}{c}2 \ell+2 w=62 \\ \ell-2 w=1\end{array}\right.$ represents this situation,
where ℓ represents the length in inches and w represents the width in inches. What are the length and the width of the frame?

$2 \ell+2 w=62$	$2(21)+2 w=62$
$\ell-2 w=1$	$42+2 w=62$
$3 \ell+0=63$	$2 w=20$
$3 \ell=63$	$w=10$
$\ell=21$	

Elaborate

10. How can you decide whether to add or subtract to eliminate a variable in a linear system? Explain your reasoning.
If two of the variable terms are opposites, then you can add to eliminate a variable. If two
of the variable terms are the same, then you can subtract to eliminate a variable.
11. Discussion When a linear system has no solution, what happens when you try to solve the system by adding or subtracting?
When the equations are added or subtracted to eliminate a variable, the result is a false
statement, such as $\mathbf{0}=\mathbf{9}$; this means there is no solution.
12. Essential Question Check-In When you solve a system of linear equations by adding or subtracting, what needs to be true about the variable terms in the equations?
The equations must have at least one pair of variable terms that are the same or opposites.

ELABORATE

QUESTIONING STRATEGIES

When the equations in a system have like terms with the same coefficient and you want to eliminate a variable by subtracting, does it matter which equation is subtracted from the other equation? Explain. No; since the coefficient of the variable is the same in both equations, the variable will be eliminated whether the second equation is subtracted from the first or the first equation is subtracted from the second.

AVOID COMMON ERRORS

After choosing to use subtraction to solve a linear system of equations, some students may make errors when subtracting negative numbers. Suggest that they use the definition of subtraction to rewrite one of the equations with opposite signs and then add the equations.

SUMMARIZE THE LESSON

?How do you solve a system of linear equations by adding or subtracting? If the equations have like terms whose coefficients are opposites, add the equations to eliminate one variable. If the equations have identical terms, subtract the equations to eliminate one variable. Solve for the value of the remaining variable. Then, substitute that value into either equation and solve for the value of the first variable.

EVALUATE

ASSIGNMENT GUIDE

Concepts and Skills	Practice
Explore	Exercises 1, 22
Exploring the Effects of Adding Equations	
Example 1	$\begin{aligned} & \text { Exercises 2-9, } \\ & 23-24 \end{aligned}$
Solving Linear Systems by Adding or Subtracting	
Example 2	Exercises 10-15
Solving Special Linear Systems by Adding or Subtracting	
Example 3	$\begin{aligned} & \text { Exercises 16-21, } \\ & 25 \end{aligned}$
Solving Linear System Models by Adding or Subtracting	

Evaluate: Homework and Practice

1. Which method of elimination would be best to solve the system of linear equations? Explain.

- Online Homework - Online Homewo - Hints and Help

$$
\begin{cases}\frac{1}{2} x+\frac{3}{4} y=-10 & \text { The addition method would be best because the } y \text {-values are opposites, } \\ -x-\frac{3}{4} y=1 & \text { or additive inverses. }\end{cases}
$$

Solve each system of linear equations by adding or subtracting.
2. $\left\{\begin{array}{l}3 x+2 y=10 \\ 3 x-y=22\end{array}\right.$

$$
3 x+2 y=10
$$

$$
\frac{-(3 x-y=22)}{0+3 y=-12}
$$

$$
y=-4
$$

$$
3 x-(-4)=22
$$

$$
x=6
$$

$$
\text { Solution: }(6,-4)
$$

5. $\left\{\begin{array}{l}7 x+y=-4 \\ 2 x-y=1\end{array}\right.$
6. $\left\{\begin{aligned}-5 x+y & =-3 \\ 5 x-3 y & =-1\end{aligned}\right.$
7. $\left\{\begin{aligned}-2 x+y & =3 \\ 3 x-y & =-2\end{aligned}\right.$
$-2 x+y=3$
$3 x-y=-2$

$$
x+0=1
$$

$$
x=1
$$

$$
3(1)-y=-2
$$

$$
y=5
$$

$$
\text { Solution: }(1,5)
$$

$$
7 x+y=-4
$$

$-5 x+y=-3$

$$
2 x-y=1
$$

$5 x-3 y=-1$

$$
9 x+0=-3
$$

$$
\begin{aligned}
& x=-\frac{1}{3} \\
& 7\left(-\frac{1}{3}\right)+y=-4 \\
& y=-\frac{5}{3} \\
& \text { Solution: }\left(-\frac{1}{3},-\frac{5}{3}\right)
\end{aligned}
$$

$$
0-2 y=-4
$$

$$
y=2
$$

$$
5 x-3(2)=-1
$$

$$
x=1
$$

Solution: (1, 2)
8. $\left\{\begin{array}{l}6 x-3 y=15 \\ 4 x-3 y=-5\end{array}\right.$

$$
6 x-3 y=15
$$

7. $\left\{\begin{array}{l}2 x+y=-6 \\ -5 x+y=8\end{array}\right.$

$$
2 x+y=-6
$$

$$
-(-5 x+y=8)
$$

$$
x=-2
$$

$$
2(-2)+y=-6
$$

$$
y=-2
$$

Solution: (-2,-2)

$$
\frac{-(4 x-3 y=-5)}{2 x+0=20}
$$

$$
x=10
$$

$$
6(10)-3 y=15
$$

$$
y=15
$$

Solution: $(10,15)$
Module 11
9. $\left\{\begin{aligned} 8 x-6 y & =36 \\ -2 x+6 y & =0\end{aligned}\right.$

$$
8 x-6 y=36
$$

$$
-2 x+6 y=0
$$

$$
6 x+0=36
$$

$$
x=6
$$

$$
-2(6)+6 y=0
$$

$$
y=2
$$

Solution: $(6,2)$

Exercise	Depth of Knowledge (D.O.K.)	common CORE	Mathematical Practices
	\vdots	Recall of Information	
$2-18$	$\mathbf{2}$ Skills/Concepts	MP. $\mathbf{2}$ Reasoning	
19	$\mathbf{2}$ Skills/Concepts	MP. $\mathbf{4}$ Modeling	
20	$\mathbf{2}$ Skills/Concepts	MP. $\mathbf{2}$ Reasoning	
21	$\mathbf{2}$ Skills/Concepts	$\mathbf{M P . 4}$ Modeling	
22	$\mathbf{2}$ Skills/Concepts	MP. $\mathbf{2}$ Reasoning	

10. $\left\{\begin{aligned} \frac{1}{2} x-\frac{7}{9} y & =-\frac{20}{3} \\ -\frac{1}{2} x+\frac{7}{9} y & =6 \frac{2}{3}\end{aligned}\right.$
11.

$$
\frac{1}{2} x-\frac{7}{9} y=-\frac{20}{3}
$$

$$
-\frac{1}{2} x+\frac{7}{9} y=6 \frac{2}{3}
$$

$$
0+0=0
$$

$$
0=0
$$

Infinitely many solutions
12. $\left\{\begin{aligned}-2 x+5 y & =7 \\ 2 x-5 y & =-7\end{aligned}\right.$
$-2 x+5 y=7$
$+2 x-5 y=-7$

$$
\begin{aligned}
0+0 & =0 \\
0 & =0
\end{aligned}
$$

Infinitely many solutions
14.
$\left\{\begin{array}{l}-5 x-y=-3 \\ -5 x-y=-2\end{array}\right.$

$-5 x-y$	$=-3$
$-(-5 x-y$	$=-2)$
$0+0$	$=-1$
0	$=-1$

No solution

No solution

$$
\text { 13. } \begin{aligned}
& x+y=0 \\
&-x-y=0 \\
& \boldsymbol{x}+\boldsymbol{y}=0 \\
&-\boldsymbol{x}-\boldsymbol{y}=\mathbf{0} \\
& \hline \mathbf{0}+\mathbf{0}=0 \\
& \mathbf{0}=0
\end{aligned}
$$

Infinitely many solutions
15. $\left\{\begin{array}{l}a x-b y=c \\ a x-b y=c\end{array}\right.$

$$
\begin{aligned}
a x-b y & =c \\
-(a x-b y & =c) \\
\hline 0+0 & =0 \\
0 & =0
\end{aligned}
$$

Infinitely many solutions

$$
\begin{aligned}
& \left\{\begin{array}{l}
-10 x+2 y=-7 \\
-10 x+2 y=-2
\end{array}\right. \\
& -10 x+2 y=-7 \\
& \begin{aligned}
-(-10 x+2 y & =-2) \\
\hline 0+0 & =-5 \\
0 & =-5
\end{aligned}
\end{aligned}
$$

16. The sum of two numbers is 65 , and the difference of the numbers is 27 . The system of linear equations $\left\{\begin{array}{l}x+y=65 \\ x-y=27\end{array}\right.$ represents this situation, where x is the larger number and y is the smaller number. Solve the system to find the two numbers.

$$
\begin{array}{r}
x+y=65 \\
x-y=27 \\
\hline 2 x+0=92 \\
x=46 \\
x+y=65 \\
46+y=65 \\
y=19
\end{array}
$$

The larger number is 46 and the smaller number is 19.

Exercise	Depth of Knowled	dge (D.O.K.)	ComMon Cors	Mathematical Practices
23	3 Strategic Thinking	MOTS	MP. 4 Modeling	
24	3 Strategic Thinking	MOTS	MP. 3 Logic	
25	3 Strategic Thinking	MOTS	MP. 6 Precision	

AVOID COMMON ERRORS

Point out to students that when they use the elimination method, they must line up both the like terms and the equal signs vertically.

KINESTHETIC EXPERIENCE

To check solutions by graphing, create a coordinate grid on the floor using painter's tape. Have students help you decide where to place a tape line for one of the equations. Then have another student walk the line for the second equation. The student should stop when encountering the tape line for the first equation. The class should help the student identify that position's coordinates and check the solution. If the lines are parallel, the student should note that the paths will never cross.
17. A rectangular garden has a perimeter of 120 feet The length of the garden is 24 feet greater than twice the width. The system of linear equations $\left\{\begin{aligned} 2 \ell+2 w & =120 \\ \ell-2 w & =24\end{aligned}\right.$
represents this situation, where ℓ is the length of the garden and w is its width. Find the length and width of the garden.
18. The sum of two angles is 90°. The difference
of twice the larger angle and the smaller angle is 105°. The system of linear
equations $\left\{\begin{array}{c}x+y=90 \\ 2 x-y=105\end{array}\right.$ represents this
situation where x is the larger angle and y is the smaller angle. Find the measures of the two angles.
19. Max and Sasha exercise a total of 20 hours each week. Max exercises 15 hours less than 4 times the number of hours Sasha exercises. The system of equations $\left\{\begin{array}{c}x+y=20 \\ x-4 y=-15\end{array}\right.$ represents this situation, where x represents the number of hours Max exercises and y represents the number of hours Sasha exercises. How many hours do Max and Sasha exercise per week?
20. The sum of the digits in a two-digit number is 12 . The digit in the tens place is 2 more than the digit in the ones place. The system of linear
equations $\left\{\begin{array}{l}x+y=12 \\ x-y=2\end{array}\right.$ represents this situation,
where x is the digit in the tens place and y is the digit in the ones place. Solve the system to find the two-digit number.

$$
\begin{aligned}
2 \ell+2 w & =120 \\
\ell-2 w & =24 \\
3 \ell+0 & =144 \\
\ell & =48 \\
2 \ell+2 w & =120 \\
2(48)+2 w & =120 \\
96+2 w & =120 \\
2 w & =24 \\
w & =12
\end{aligned}
$$

The length of the garden is 48 feet and the width is 12 feet.

$$
\begin{aligned}
x+y & =90 \\
2 x-y & =105 \\
\hline 3 x+0 & =195 \\
3 x & =195 \\
x & =65 \\
x+y & =90 \\
65+y & =90 \\
y & =25
\end{aligned}
$$

The larger angle is 65° and the smaller angle is 25°.

$$
\begin{aligned}
x+y & =20 \\
-(x-4 y & =-15) \\
\hline 0+5 y & =35 \\
y & =7 \\
x+y & =20 \\
x+7 & =20 \\
x & =13
\end{aligned}
$$

Max exercises 13 hours a week and Sasha exercises 7 hours a week.

$$
\begin{gathered}
x+y=12 \\
x-y=2 \\
\hline 2 x+0=14 \\
x=7 \\
x+y=12 \\
7+y=12 \\
y=5
\end{gathered}
$$

21. A pool company is installing a rectangular pool for a new house. The perimeter of the pool must be 94 feet, and the length must be 2 feet more than twice the width

The system of linear equations
$\{2 \ell+2 w=94$
$\ell=2 w+2$ represents
this situation, where ℓ is the length and w is the width. What are the dimensions of the pool?

$$
2 \ell+2 w=94
$$

$$
\ell-2 w=2
$$

$$
3 \ell+0=96
$$

$$
3 \ell=96
$$

$$
\ell=32
$$

$$
2 \ell+2 w=94
$$

$$
2(32)+2 w=94
$$

$$
64+2 w=94
$$

$$
2 w=30
$$

$$
w=15
$$

The pool is $\mathbf{3 2}$ feet long and 15 feet wide.
22. Use one solution, no solutions, or infinitely many solutions to complete each statement.
a. When the solution of a system of linear equations yields the equation $4=4$, the system has infinitely many solutions
b. When the solution of a system of linear equations yields the
equation $x=4$, the system has one solution
c. When the solution of a system of linear equations yields the
equation $0=4$, the system has
no solutions

H.O.T. Focus on Higher Order Thinking

23. Multiple Representations You can use subtraction to solve the system of linear equations shown.

$$
\left\{\begin{array}{l}
2 x+4 y=-4 \\
2 x-2 y=-10
\end{array}\right.
$$

Instead of subtracting $2 x-2 y=-10$ from $2 x+4 y=-4$, what equation can you add to get the same result? Explain.
You can add $-2 x+2 y=10$ since subtracting is the same as adding the opposite.

COMMUNICATING MATH

Have students discuss when to use each of the methods they have learned for solving systems of equations. Graphing can be used for linear systems that have integer solutions. Substitution can be used when one of the equations has a variable with a coefficient of 1 . Adding or subtracting can be used when the coefficient of a variable in one equation is the same as, or the opposite of, the coefficient of the same variable in the other equation.

JOURNAL

Have students write a journal entry explaining how to solve a system of linear equations by eliminating a variable. They should include how you know whether to add or subtract the equations.
24. Explain the Error Liangs solution of a system of linear equations is shown. Explain Liang's error and give the correct solution.

$$
\left\{\begin{aligned}
3 x-2 y & =12 \\
-x-2 y & =-20
\end{aligned}\right.
$$

Liang added the two equations but subtracted the y-terms. The equations should be subtracted. The solution

$$
3 x-2 y=12
$$ is $(8,6)$.

$$
\frac{-x-2 y=-20}{2 x=-8}
$$

$$
2 x=-8
$$

$$
x=-4
$$

$$
3 x-2 y=12
$$

$$
3(-4)-2 y=12
$$

$$
-12-2 y=12
$$

$$
-2 y=24
$$

$$
\begin{aligned}
3 x-2 y & =12 \\
-(-x-2 y & =-20) \\
\hline 4 x & =32 \\
x & =8 \\
3(8)-2 y & =12 \\
24-2 y & =12 \\
-2 y & =-12 \\
y & =6
\end{aligned}
$$

$y=-12$
Solution: ($-4,-12$)
25. Represent Real-World Problems For a school play, Rico bought 3 adult tickets and 5 child tickets for a total of $\$ 40$. Sasha bought 1 adult ticket and 5 child tickets for a total of $\$ 25$.
The system of linear equations
$\left\{\begin{aligned} 3 x+5 y & =40 \\ x+5 y & =25\end{aligned}\right.$ represents this
situation, where x is the cost of an adult ticket and y is the
 tickets and 3 child tickets?

$$
\begin{aligned}
& 3 x+5 y=40 \\
&-(x+5 y=25) \\
& \hline 2 x+0=15 \\
& x=7.5 \\
& x+5 y=25 \\
& 7.5+5 y=25 \\
& 5 y=17.5 \\
& y=3.5 \\
& 5(7.5)+3(3.5)=48 \\
& \text { Julia will pay } \$ 48
\end{aligned}
$$

Lesson Performance Task

A local charity run has a Youth Race for runners under the age of 12 . The entry fee is $\$ 5$ for an individual or $\$ 4$ each for two runners from the same family. Carter is collecting the registration forms and fees. After everyone has registered, he picks up the cash box and finds a dollar on the ground. He checks the cash box and finds that it contains $\$ 200$ and the registration slips for 47 runners. Does the dollar belong in the cash box or not? Explain your reasoning. (Hint: You can use the system of equations $i+f=47$ and $5 i+4 f=200$, where i equals the number of individual tickets and f equals the number of family tickets.)

Solving the system gives the solution $i=12$ and $f=35$. However, this result is not possible because f must be an even number since family registrations were sold only as pairs. If we add the $\mathbf{\$ 1}$ to the total cash, we can rewrite the second equation as $\mathbf{5 i}+\mathbf{4 f}=\mathbf{2 0 1}$. Solving the new system yields the solution $i=13$ and $f=34$, so the dollar does belong in the cash box. (Note that some students may simply reason from the initial solution that they can swap one family registration for one individual registration and get a total of \$201.)

QUESTIONING STRATEGIES

Family tickets were sold only when two runners from the same family registered at the same time. What does this tell you about the total number of family tickets sold? It must be an even number.

AVOID COMMON ERRORS

Some students may try to add the two given equations to solve the system by elimination. Remind them that the elimination method only works when the equations have like terms whose coefficients are the same or opposites. They should recognize that they can solve this system by substitution.

KINESTHETIC EXPERIENCE

Have students use play money, a cash box, and ticket stubs to act out the situation so they can better visualize how different numbers of individual and family tickets sold would result in different amounts of money in the cash box.

EXTENSION ACTIVITY

On an index card, have students write a riddle that can be represented by a system of equations whose solution can be found by elimination. For example: The sum of one number and another number is 5 . The difference between the two numbers is 1 . On the back of the card, have students write the solution and show the system of equations used to find it. Then have students trade cards and solve each other's riddles.

Scoring Rubric

2 points: Student correctly solves the problem and explains his/her reasoning. 1 point: Student shows good understanding of the problem but does not fully solve or explain his/her reasoning.
0 points: Student does not demonstrate understanding of the problem.

